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Introductory Statement

The central mission of the Stanford Center for Research and Develop-ment in Teaching is to contribute to the improvement of teaching inAmerican schools. Given the urgency of the times, technological develop-ments, and advances in knowledge from the behavioral sciences about teach-ing and learning, the Center works on the assumption that a fundamental
reformulation of the future role of the teacher will take place. TheCenter's mission is to specify as clearly, and on as empirical a basis aspossible, the direction of that reformulation, to help shape it, to fashionand validate programs for training and retraining teachers in accordance
with it, and to develop and test materials and procedures for use in thesenew training programs.

The Center is at work in three interrelated problem areas:
(a) Heuristic Teaching, which aims at promoting self-motivated and sus-
tained inquiry in students, emphasizes affective as well as cognitive
processes, and places a high premium upon the uniqueness of each pupil,teacher, and learning situation; (b) The Environment for Teaching., whichaims at making schools more flexible so that pupils, teachers, and learn-ing materials can be brought together in ways that take account of their
many differences; and (c) Teaching Students from Low-Income Areas, whichaims to determine whether more heuristically oriented teachers and more
open kinds of schools can and should be developed to improve the educationof those currently labled as the poor and the disadvantaged.

The Methodology Unit developed
No. 73, which follows, to deal with
where some cases are missing. Such
encountered in the analysis of data

Research and Developmen4. Memorandum
the problem of comparing proportions
nonresponse problems are frequently
gathered by Center projects.

iii

ni

4



APIWAIIIMPIFIMMINOMMEEMPIIPITNERNINIMR1

Table of Contents

Page

List of Tables vii

Abstract ix

1. Introduction 1

2. Probability Models for Incomplete Data 2

Model 1: Randomly Missing Data 3

Model 2: Independent Variable Influences Missing Data . . . 3

Model 3: Dependent Variable y Influences Missing Data . . 4

Model 4: The Values of Both the Dependent and Independent
Variable Influence Missing Data 4

3. Two-Sample Problems for y Dichotomous

4. Randomly Missing Data: Statistical Techniques for Problems
(a) Through (e) Under Model 1 7

5. The Independent Variable Influences Missing Data (Model 2):
Statistical Techniques for Problems (a) Through (e) 9

6. The Dependent Variable Influences Missing Data (Model 3):
Statistical Techniques for Problems (a) Through (e) 10

7. Both Variables Influence Missing Data (Model 4): Statistical
Techniques for Problems (a) Through (e) 15

8. Estimators of the pi 16

9. Comparisons of Model 1 and Model 3 Estimators of d 18

A A

10. Comparisons of R1 and R3 26

11. The Estimation of the Odds Ratio OR 34

12. Conclusions: Test and Confidence Intervals Under
Models 1, 2, or 3 38

References 40

V

5



List of Tables

Table No.

1.

2.

3.

4.

Notation

Conditional and Unconditional Means

Asymptotic Conditional Variance Under Model 1

Asymptotic Unconditional Variance Under Model 1

Page

6

8

8

9

5. Asymptotic Unconditional Variance Under Model 2 10

6. Asymptotic Conditional Variance Under Model 3 13

7. Asymptotic Unconditional Variance Under Model 3 14

8. Asymptotic Behavior of f
11

Under Model 3 17

9. Asymptotic Behavior of d
1

Under Model 3 19

10. Ratio of Asymptotic Unconditional Formulas for MSE al

and MSE a
3 22

A A
11. Exact Unconditional Bias of d1 , d3 for N1 = N2 . . . . 23

12.
A

Exact Ratio of Unconditional Formulas for MSE

and MSE 25

13. Ratio of Exact to Asymptotic Unconditional Variance of d . 26

14. Asymptotic Behavior of R1 Under Model 3 27

15. Ratio of Asymptotic Unconditional Formulas for MSE 111

and MSE R3 30

16. Exact Unconditional Bias for R1 , R3 as a Percent of R . 31

17. Exact Unconditional Ratio of MSE R1 to MSE R3 33

18. Asymptotic Unconditional Variance of N
1
+ N

2
OR . . . . 35

19. Exact Unconditional Bias of OR for N
1
= N

2
= 20 . . . . 36

20. Ratios of Exact to Asymptotic Variance and MSE for

OR for N
1

= N
2
= 20 37

vii

6



Abstract

Two-sample problems with dichotomous data are considered; some

specific probability models are developed to describe which observations

are missing and why; and the statistical techniques appropriate under

each of the models are discussed.
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MISSING DATA PROBLEMS FOR TWO SAMPLES

ON A DICHOTOMOUS VARIABLE

Janet Dixon Elashoff and Robert M. Elashoff
1

1. Introduction

Incomplete or missing data is a major problem ir many fields. Data

may be incomplete because of nonresponse, random loss, transcription

errors, refusal to cooperate, and a variety of other reasons. In these

instances, statistical techniques to deal with the incomplete data are

necessary. One possibility is simply to delete and ignore the incomplete

cases. To select the appropriate technique, however, some facts must

be known about the kind of observations which are missing and which

variables influence the loss of certain observations.

In this study twosample problems with dichotomous data are con

sidered; some specific probability models are developed to describe

which observations are missing and why; and the statistical techniques

appropriate under each of the models are discussed. Using techniques

which assume that observations are missing at random may be extremely

misleading. If the probability model governing the occurrence of missing

data is complex, the only adequate solution may be to "find out what the

missing observations are."

Section 2 discusses four probability models for the occurrence

of missing observations. Section 3 introduces notation and lists the

estimation and testing problems to be discussed. The succeeding three

sections derive solutions under each of the first three probability

1
Janet D. Elashoff is Assistant Professor of Education at Stanford

University and a Research and Development Associate at SCRDT; Robert M.
Elashoff is Associate Professor of Biostatistics at the University of
California, San Francisco.
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models proposed, while Section 7 indicates how headway might be made

under Model 4. Then in Sections 8, 9, 10, and 11 the Model 1 and

Model 3 estimators are compared using asymptotic and small sample

results. Section 12 contains recommendations about procedures to use

for each of the estimation and testing problems discussed and problems

for further research.

2. Probability Models for Incomplete Data

This section discusses four general probability models proposed

in the statistics literature to account for the occurrence of missing

data.

Assume that one independent variable x and one dependent

variable y are under study for each individual. Further assume that:

(1) no x observations are missing, (2) for each value of x occurring

in the study, a random sample of Nx individuals is drawn, and nx

individuals are observed on y and Nx - nx individuals are not

observed on y (their y values are "missing" and so unknown), (3) no

other variables have been measured.

Define

q(x,y) = Pr (an individual's y is observedlx,y) .

In other words, among individuals with values x and y of the

independent and dependent variables, the probability that the value of

the dependent variable is not observed is 1-q(x,y) . Thus, the loss of

particular observations may be influenced by the actual values of the

dependent and independent variables.

9
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Model 1: Randomly Missing Data

It is commonly assumed that missing observations have occurred at

random or by chance. That is, neither the value of x nor the value

of y influences whether an individual's y value is observed or not.

Thus the random model states that q(x,y) , the probability that an

individual's y value is observed, is independent of both x and

or

q(x,y) = q for all x and y .

The random model is appropriate where factors completely independent

of the variables under study are causing missing data or where a question

y is asked of a random subsample of individuals surveyed.

The random model is the basis for the frequent practice of "ignoring"

missing data, that is, analyzing only complete observations. The practice

of ignoring missing data is appropriate if the random model holds, other-

wise it may give misleading results (see Sections 8, 9, and 10).

Model 2: Independent Variable Influences Missing Data

Model 2 states that q(x,y) , the probability that an individual's

y value is observed, is dependent on x but independent of the value

of y , or

q(x,y) = qx for all y .

For example, suppose computer-assisted instruction is compared with

a conventional teaching method. Let x denote the teaching method. A

sample of Nx students is taught by method x , and each student attains

a final score of y on material learned. Due to computer breakdowns

final scores y are missing for some students. In this example, the



independent variable, teaching method, but not the dependent variable,

final score, influences the probability that an observation is missing.

Model 3: Dependent Variable y Influences Missing Data

Model 3 states that q(x,y) depends on the value of the dependent

variable y but is independent of the value of the independent variable

x

q(x,y) = qy for all x .

For example, suppose patients with a certain disease are assigned

either an active drug or a placebo x in a double blind study. The

placebo has the same side effects as the active drug, but presumably it

does not have the same curative or palliative effect as the active drug.

A follow-up study is made and each patient is scored as improved or

unimproved y . Lack of improvement may cause some patients to drop out

of the study or refuse to cooperate further. Improvement also may give.

patients a reason to drop out or a chance to leave the area. In both

cases the y measurements are unknown. Clearly, in these circumstances,

missing y's may be influenced by whether or not the patient is improved

but not directly by the drug the patient received.

Model 4: The Values of Both the Dependent and Independent

Variable Influence Missing Data

Model 4 states that q(x,y) depends on the value of the dependent

variable y and the value of the independent variable x . Both an

individual's y value and his x value affect the probability that

his y value will be observed.

11
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Suppose, for example, that a prospective panel study is undertaken

to investigate differences in employment status y between the sexes x

in New England over a ten-year period. Some people will be lost to

follow-up in the course of the study because of emigration from the

region. Clearly employment status is one factor influencing emigration- -

thus, employment status y influences whether an individual's employment

status is observed. Furthermore, the sexes have differential mobility,

so the independent variable x also influences whether an individual's

employment status is observed or not.

3. Two-Sample Problems for y Dichotomous

This section outlines five statistical problems involving the

comparison of two independent proportions [problems (a) through (e)

below] and presents the notation used in describing samples with missing

data.

Let pi be the probability that y equals one in population i

p
i
= Pr (y= 11x=i) .

The five statistical problems to be discussed are:

(a) To estimate pi for population i .

(b) To estimate the difference d = pi - p2

(c) To estimate the ratio R = P1ip2

P1 (1 P2)(d) To estimate the odds ratio OR =
P2 (1 Pl)

(e) To test Ho : pi - p2 against the alternative
H1 : p1 # p2

Random samples of Ni and N2 individuals are selected from the

two infinite populations denoted by x = 1 and x = 2 . Suppose that

4
Jy
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n
i

individuals are actually observed from each sample, n < N
i

(i = i,2)

so that Ni - ni observations are missing from each sample. Let r
i

be the number of individuals for whom Y 1 out of the n
i

actually

observed in population i ; ri = ni - ri . Let u
i

be the number of

individuals with y = 1 in the Ni - ni individuals who weren't

observed; ui = Ni - ni - ui . The number of missing observations

Ni - ni is known but u
i

is not known. This notation is summarized

in Table 1.

TABLE 1

Notation

Population Value of
P(y1x) siacal

q(1,1)

q(1,0)

Actual number
in the sample

Observed number
in the sample

1

1

1

1

0

Totals

P1

1-p1

r
1
+ u

1

r1 + u'
1

N
1

r
1

r'

n
1

2

2

2

1

0

Totals

P2

1-p2

q(2,1)

q(2,0)

r
2
+ u

2

r2 + u'
2

N
2

r
2

r'
2

n
2

Notice it is assumed that it is not feasible to make further efforts

to obtain the y-values for individuals whose y-values are missing. Call-

backs will not be carried out and further data on other measured variables

will not enable us to obtain "good" predicted values of y . These strin-

gent restrictions are relaxed only in the discussion of Model 4.
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4. Randomly Missing Data: Statistical Techniques for

Problems (a) Through (e) Under Model 1

When Model 1 is correct and missing observations occur at random,

the N1 - nl and N2 - n2 missing observations are ignored and the

remaining observations are regarded as random samples of size nl and

n
2

respectively. Standard statistical techniques are applied to these

random samples. The maximum likelihood (ML) estimator of pi under

Model 1 is Pli = ri/ni and the ML estimators of d , R , and OR are

obtained by substituting ki for pi in each of these expressions.

The conditional and unconditional means and variances of the estimators

of pi , d , R , and OR are given in Tables 2, 3, and 4.

Alternative estimators for R and OR or simple functions of these

quantities have been derived and studied under Model 1. For example,

Haldane (1955) and Anscombe (1956) recommend that log OR should be

estimated by substituting pi + (1/2ni) for 6i and [(1-6i) + (1/2ni)]

for (1 -pi) in the expression OR, to reduce bias (see Table 2).

Since the primary focus of this study is comparison of estimators under

different models for the missing data, such modifications were not

investigated. For the conditional mean of an estimator the expectation

of the estimator is taken conditional upon the observed ni ; the uncon-

ditional mean is not conditioned upon the ni . In the development of

the asymptotic means and variances it is assumed that

(1) T = lim n
i
/N

i
> 0

(2) X = lim N
1
/(N

1
+ N2) > 0

Occasionally, Al = A and A2 = (1 -A) will be used.

14
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The statistics pli , al , R1 , and al have asymptotic normal

distributions conditionally and unconditionally with the means and

variances shown in Tables 2, 3, and 4.

TABLE 2

Conditional and Unconditional Means (Assuming Model 1)

Estimator

Pli

a 1 = f1 62

R1 = f1 /62

Oil Y1-62)/62(141)

Mean

Pi

P1 P2

Pl/P2

P1(1-P2)/P2(1-P1)

[asymptotic]

[asymptotic]

TABLE 3

Asymptotic Conditional Variance Under Model 1

Estimator Variance

g
1
+ N

2 pli

P1(1-P1) P2(1-P2)VN
1
+ N

2
d
1 AT

1
(1-X)T

2

N
2

1 131(1 Pl) 1P112 P2(1 P2)}

(P2)

2 TiA tp2J T2 (1 - X)

131(1
p2)

1 P2
+

P1A
1
+ N

2
di

P2

2(1-P1) 2 (1 - pi)TiA p2T2(1 - X)i

p
i
(1-p

i
)

AiTi [exact]

[exact]

15
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TABLE 4

Asymptotic Unconditional Variance Under Model 1

Estimator

/N1 + N
2 pli

411 N2

41
1
+ N

2
a

1

Pi (1 -Pi)

qXi

1

Variance

qA(1 -A) [(1-X)P1(1 p1) + 42(1 - p2)]

P1

3 EP2(1 pl) A(P2 p1)1
"2(1-A)A

P1(1-132)
3 (1)2(1-P2)(14) + P

1 (1-P 1)11pA(1-A)qp
3
(1- )

1

A test of the Ho : pi = p2 against one or two-sided alternatives

may be carried out using Fisher's exact test. Naturally, the power of

the test based on sample sizes ni will be less than that based on

sample sizes Ni .

5. The Independent Variable Influences Missing Data (Model 2):

Statistical Techniques for Problems (a) Through (e)

In this model the probability of observing the particular y score

for a particular individual is independent of the value of y but does

depend on the population sampled. The estimators defined under Model 1

for pi , d , R , and OR are also the ML estimators assuming Model 2,

and they have the same conditional means and variances under Model 2 as

under Model 1 (see Tables 2 and 3). Moreover, the asymptotic uncondi-

tional means are also the same. However, the unconditional variances
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under Model 2 are different from those and

TABLES

er Model 1 (see Table 5).

Asymptotic Unconditional Variance Under Model 2

Estimator

1
+ N

2 li

a
1 2 1

N N
2

VN
1
+ N

2
OR1

Variance

pi(1 - pi)

qiXi

P1(1 Pl) P2(1 P2)

(1 - A)q2

2

P1(1 Pl) P1(1 P2)
+

Aq1P2
2

(1-X)q2p2
3

P1(1 P2)

[P2(1-132)q2(14) P1(1-P1)q1A]A(1-A)4(1-p1)3q1q2

It is possible to test whether Model 1 or Model 2 applies in a

particular problem. The null hypothesis is Ho : qx = q for x = 1,2 ;

the alternative hypothesis is H1 : q1 q2 . Fisher's Exact Test may

be used to carry out a test conditional on the Ni and (n1 + n2) .

To test HO : pl = p2 against one or two-sided alternatives use the

same tests as if Model 1 obtains.

6. The Dependent Variable Influences Missing Data (Model 3):

Statistical Techniques for Problems (a) Through (e)

Under Model 3, the value of the dependent variable y influences

the probability that an individual's y value will be observed. The

17
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independent variable x does not influence the probability of a missing

observation. Therefore

(3) q(l,y) = q(2,y) = qy for y = 0,1 .

The maximum likelihood equations for Model 3 have quadratic and cross

product terms in the p's and q's . For example

alnL n
1
-r

1
(n

2
-r

2
) -(N,-

-1* -1*

n1)(1-p,) -(N,-n2)(1-p,)
+ + - 0 .aq0 q0

q0 1-plq,-(1-pl)qo 1-p2q,-(1-p2)qo

Consequently, simple estimators are of interest. Eklund (1959) argues

that if there were no missing observations, the pi might be estimated

by pi = (ri + ui)/Ni . Therefore, estimating the q's as

(4)

q(io.) =

=

r
i

ri + ui

r

ri + u'
i

and using relationship (3) yields equations

(5)

r
1

r
2

rl + ul r2 + u2

r1
r 2

r' + u' r'
2
+ ul

21 1

Solving for u
i

and ui yields estimates

[
1 rir2 - qri 1

N ' '

2
r1 - N

1
r2

(6)

A
r
2 Au = u .

2 r
1

1
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This leads to estimating the qy and pi as

(7)

(8)

n1r2 - n2r1

ql N r' - N r'
2 1 1 2

n1r2 - n2r1

=q0 N1r2 - N2r1

r
i 1

fi3i ^Ni

ri - Nir.

Ni n1r2 - n2r1

r
i

[N
2
(n
1

- r
1
) - N

1
(n
2
- r

2
)]

N
i

n1r2 - n2r1

It can be shown that (8) is indeed a consistent estimator of p
i

.

Using this estimator for pi , possible estimators for d , R , and OR

are d3 = p31 - p32 , R3 = f31/f32 , and 6113 = f31(1 - f32)/f32(1 - D31) ,

respectively. Note that the estimator of OR , OR3 ,Is identical to Oki .

Under Model 3 these estimators have asymptotic normal distributions and

are asymptotically unbiased and consistent--conditionally and uncondi-

tionally. The asymptotic conditional and unconditional variances are

shown in Tables 6 and 7.

Notice that the Model 3 estimator for pi fails for pl = p2

both asymptotic variances are infinite for this case. Basically, for

pi = p2 = p there is insufficient information in the samples to estimate

p , qi , and q0 . Thus we may not be able to obtain reasonable estimates

of pi and p2 using this procedure in cases where pi is close to p2 .

To illustrate, consider the case N
1

= N
2

. When n
1
= n

2
, then

19
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TABLE 6

Asymptotic Conditional Variance Under Model 3

Estimator Variance

6 iu-ei)
N 6v.77+77

T -T2 3i 4 37ruL.k ) 02T + (4T2 - 2T ]2

T
2
0 -6

I 2 1
) 1 i 1 2

1
2 2

Al + N
2

d3
T
1
T
2
(0

2
-6

1
)

1+ [6
1
e
2 1

) (1-62) (T
1-T2)

2]
xiti

6
1
(1-6

1
)

[6
2
(1-0

2
)(T

1
-T

2
)
2

2
+ (0

2
-0

1
)
2
T
2

1
]4 AT

1

6
2
(1-6

2
)

(1-X)T2 (61(1-61)(T1-T2)2 4. (62-61)
2

01)2T2]

Tl 2 1
T
2

el(T
:
:el) + (

6
2

61

) T
2
(1-4)

62(1-62)
Al + N2 R3 ()

6
2

2

A
1
+ N

2
OR3

6
1
(1-6

2
) 1 - 6

2

6
2
(1-6 )

2 T
1
X(1-6

1
) T

2
(11')0

22 1

61

where

r
i

6 = E() =
i n

i
piql + (1

piql
- p )q

0

p31 = Pli . Note, however, that if r2/n2 = r1 /n1 , q1 = 0 and pi is

undefined. If n1 - n2 = r1 - r2 then 41 = (n1r2 - n2r1)/N0 yielding

f = 0 , another nonsense estimate. Even worse, q1 and 6 may both be

negative; this will occur if r1 - (n1 - n2) < r2 < n2 rl/n, or

n
2
r
1
< r

2
< r

1
- (n

1
- n

2
) .n

1
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TABLE 7

Asymptotic Unconditional Variance Under Model 3

Estimator

+ N2 p
3i

IN
1
+ N

2
d
3

+ N2 R3

pi(1 - pi)

X(1-X)(41q0(p2-p1

1

cl0g1x(1A)

Variance

Pj(1-Pdc10 [P2 X(P2-111)]

+ pi(1-pj)q1 [(1-p2) + X(p2-p1)]

P1P2 q0 [P2 X(P2-P1)]

+ (1-pl)(1-p2)q, [1-p2+ X(p2-p1)]

gel (1-P1P2)
2

P1
3

[(1 - A)p2 + Xp1 - p1p2q1]

P2q1X(1 A)

Olt
1 2 3

p1(1-p2)
3 3 P2(1-P2)[Plcil (1-P1) q0] (1-A)

X(1-X)(11q0p2(1-pl)

p1(1 -P1) [PA. (1-P2)
q0]

A

This same problem is reflected in the behavior of the maximum likeli-

hood estimators for Model 3. When p1 p2 , the information matrix is

singular. For p1 # p2 , numerical comparisons for parameter values

listed below2 indicate that the asymptotic variances of P3i , a3 , i3 ,

and 613 are identical with those of the ML estimators of p3i , d , R ,

and OR .

.50,

q0 =
.75,

.5,

.90 ;

.75,

2Variance ratios were evaluated for p1 = .1, .25,
p2 = .1, .25, .50,.75q .90 ; q1 = .5, .75, .90, 1.0 ;

.90, 1.0 .

21r.
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Detailed investigations of the behavior of the Model 3 estimators

in large and small samples are reported in Sections 9, 10, and 11, while

in Section 12 the testing of Ho : pi = p2 is discussed.

7. Both Variables Influence Missing Data (Model 4):

Statistical Techniques for Problems (a) Through (e)

In Model 4, the probability that a particular observation is missing

depends on both the value of x , the independent variable, and the value

of y , the dependent variable. Therefore, the probability that a par-

ticular y observation is missing is different for each of the four x,y

combinations. Without further assumptions or additional information, it

is impossible to obtain consistent estimators of the pi . No detailed

studies of problems (a) through (e) were carried out for Model 4 since

entirely new problems arise when this model holds. The following are

four possible lines of attack.

(a) Assumptions can be made about.relationships among the four

probabilities q(x,y) which would allow the use of techniques

obtained for Model 2 or Model 3. For example, assume that missing

observations are twice as likely in population 1 as in population 2.

(b) Estimates of the probabilities q(x,y) may be obtained by a

pilot study or intensive subsampling of nonrespondents (see e.g.,

Cochran, 1963).

(c) Use of some related variable z can be made. For instance,

if a dichotomous variable z affects the probability distribution

of y but does not influence q(x,y) , then Eklund (1959) has

developed consistent estimators of the pi .



16

(d) Estimators based upon Models 1, 2, and 3 could be employed if

the magnitude of the biases when Model 4 holds were ascertained and

the corresponding standard error formulae changed. That is, a

robustness study could be made to find out the conditions under which

these Model 1, Model 2, and Model 3 estimators give reasonable results.

This point will be discussed in later sections.

8. Estimators of the pi

In this section the concern is only with how well the pi are

estimated and not with how to estimate the variance of pi . Since the

Model 1 and Model 2 estimators of the pi are the same, the estimation

problem is reduced to a comparison of the behavior of fli and P3i

under Models 1 and 3. How much is lost if it is assumed observations

were missing at random, if in fact q0 # q1 ? How much is lost by

using the Model 3 estimators even though q0 = ql ? To answer these

questions it is necessary to examine asymptotic unconditional results

for the bias, variance, and mean-squared error of the Model 1 and

Model 3 estimators of pi under Model 1 and Model 3. Since comparisons

between pl and p2 are the major interest, small sample work is

reported only for d , R , and OR (see Sections 9, 10, 11, and 12).

The Model 1 and Model 3 estimators for pl are

r1

p11 nl

r1 - r1) - 111(n2 - r2)

P31 N
1

nir2 - n2r1

23
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The estimator 1;31 is asymptotically unbiased with conditional and

unconditional asymptotic variances given in Tables 6 and 7. Results

for under Model 3 are given in Table 8.

TABLE 8

Asymptotic Behavior of pli Under Model 3

E fll)

Bias
(1511)

Var
1

N2
11

conditional

unconditional

el

(q1-q0) P1(1-131)

(1-Pi)g0

8
1

(1 -81)

TlA

e
2

(1-0
1
)

p
1
q
1
A

[exact]

[exact]

[ exact]

Suppose Model 1 is true and ql = q0 = q , how much is lost by

using the Model 3 estimator of pl ? For simplicity, let p2 = pl + A

and N
1
= N

2
= N . Then under Model 1 both estimators are asymptotically

unbiased and the conditional variance formulas for fll and f31

become

P1 (1-P1)

Var (f11) Nq

2 P1(1 -P1)
[A
2
/2Var 031) =

2 + (1-q)p1(1-p1)]
qA
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yielding

Var (631) 2(1-q)p1(1-p1)
= 1 +

Var (611) A
2

Under Model 1 then, 631 always has a larger variance than 611 and

gets worse in comparison with
1/11

as pl approaches 0.5 , as q

approaches zero (the proportion of missing data increases) and as

A = p2 - pl approaches zero.

Under Model 3, the asymptotic unconditional formulas for mean-

squared errors are:

e (14
1
)q

11
MSE (611) =

-71 [(ql-q0)
2

(1-P1)

2

+ N ]
11)1ql

N
1

1)2(1-1)1)q0EP2 N
1
+N

2
(P2-1)1)]

P1(1-1)1)
Ni

MSE (631) = (N1+N2)
2 1)1(1-1)2)q1(1-P2 (P2-1)1)]N

1
N
2 1)2- 1)1

1 2q1q0()
- p

1
(1-p

1
)q

1
q
0

As A approaches zero,
msE (611) will be smaller than MSE (631)

However, for pl 0 p2 and N large, the bias in IS
-11

, which increases

with lqi-q01 will make 631 preferable. In small samples, 631 is

biased and may have a larger variance than asymptotic results indicate.

9. Comparisons of Model 1 and Model 3 Estimators of d

In this section the unconditional asymptotic and exact small sample

behavior of estimators a
1

and a
3

und6r Models 1 and 3 are compared.



Model 1 and Model 3 estimators of d = pl - p2 are:

al =
rl r2
n

n22

Jr, - r1) - 111(n2 - r2)

3 1N1
N
2

n1 r -nr
2 2 1

Results of the comparison indicate that the Model 1 estimator d1 will

be preferable for pl = p2 , for q0 = ql and for small N (N < 50).

For q0 # ql , (p1 p21 0 0 , d3 will look better for large N .

Next the three situations pl = p2 , ql = qo , and the general case of

Model 3 are discussed by comparing asymptotic results and by examining

exact bias and mean square error for samples of N1 = N2 = 20, 50 .

The Model 3 estimator, d3 , is asymptotically unbiased with

conditional and unconditional variances given LI Tables 6 and 7. The

behavior of d1 under Model 3 is given in Table 9.

TABLE 9

A
Asymptotic Behavior of d1 Under Model 3

E (d1)

P1(1-P1)
p
2
(1-p

2
)

Bias (d1)
(ql-c10' piql+(1-p1)q0 p2q1+(l-p2)q0

Var IN + N2 a
1 2 1

6 (1-6 ) 6
2
(1-6

2
)

conditional
TlX

T
2
(1 -a)

unconditional

2
(1-0

2
)

(1-X)p2q1

[exact]

[exact]
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Exact unconditional results for bias, variance and mean-square error

were obtained for d1 and d3 for N
1
= N

2
= 20, 50 , for 400 sets

of parameter values p1, p2 = .10, .25, .50, .75, .90 ; ql, q0 = .50,

.75, .90, 1.0 . Results are summarized in Tables 10, 11, 12, and 13.

Notice that except for sign changes in the bias, results for pl, p2

are identical to results for p2, p1 and, with q0, ql reversed, to

results for 1-pl, 1-p2 and 1-p2, 1-p1 . Results were obtained

conditional on n
1
0 0 , n

2
0 0 ; for n1r2 = n2r1 d3 was defined to

be 0 .

When p1 = p2 , both estimators are unbiased in large and small

samples. The asymptotic unconditional variances of al and a
3

respectively become

and

qiqo p(1-p)
X(1-X) 3

(Pql (1-P)q0)

q0q1A(1X) cl°13 ql P c101(1-20
2

]

1
[ 3 ql( 1 p)3

Table 10a shows the ratio of the unconditional asymptotic variance

formulas for several values of p , qo , and ql . (Note that the con-

ditional variance of a3 is infinite for pl = p2 .) The ratio is

always less than 1.0 indicating that for pl = p2 , d1 is to be

preferred. Table 12a shows the exact ratio; al is even more strongly

preferable in small samples.

When ql = q0 , that is, when Model 1 obtains, al is unbiased in

large and small samples; d3 is unbiased in large samples but has bias

ranging from .001 to .075 in absolute value for samples of size 20

and from .001 to .045 for samples of size 50 (see Table. 11c). The
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bias ranges up to 39 and 26 percent of d for samples of size 20

and 50 respectively. The asymptotic variance formulas for Ni = N2 = N

are related by

Var a
3
= Var a

1
+

qN
(1-q)(1-p

1
-p

2
)2

They are equal only for N infinite, q = 1 or
P1 +

p2
1

; otherwise

var a
3

> var a
1

byb an amount which increases as decreases and as

pi + p2 differs from 1 . See Table 10b for ratios of the variances.

Table 12b shows the ratio of exact mean-squared errors for N = 20, 50 .

These results favor a
1

more strongly than asymptotic comparisons would

indicate.

For the general case of Model 3 when pi # p2 and qi # q0 , al

is biased and unbiased in large samples. The asymptotic uncondi-

tional ratio of MSE (d1) to var d3 is shown in Table 10. These

asymptotic comparisons indicate that for small samples (N = 20) al is

A
pi close to p2 , d3 is preferred for Ipi-p21preferred for large.

For samples as large as 200 , the bias in al makes d3 appear

131- 1321 is
preferable except for some cases where

1

small. The exact

bias in a
1

is independent of N and ranges up to .12 in absolute

value and up to 45% of d for the cases considered; it increases in

absolute value as 1q0-q1i increases. The absolute'bias in a
3

ranges

up to .06 for N = 20 and .04 for N = 50 ; maximum percentage bias

is 39 for N = 20 and 26 for N = 50 (see Table 11). For a given

p1, p2 the bias in a
3

is always one-sided while the bias in a
1

may

be either positive or negative. The bias in d3 decreases slowly with

N , with increasing 1p_-P2I and wih increasing q0 + q1 . The exact

ratio of unconditional mean-squared errors (Table 12) generally favors

28
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TABLE 10

3

Ratio of Asymptotic Unconditional Formulas for MSE al and MSE a3a

MSE dl

MSE d3 :!S

a) When pl = p2 , the ratio is independent of N , both estimators are

asymptotically unbiased. (For q0 = q1 = 1 , the ratio is 1.0 .)

p lb P2
Min Max

)

.10 .10 .220 .926

.25 .25 .600 .962

.50 .50 .790 .994

b) When
q0 ql , the ratio is independent of N , both estimators are

asymptotically unbiased. (For q0 = q1 = 1 , the ratio is 1.0 .)

p1

q0 ql 1

P2
Min

AI"

Max

.10

.25

.25

.50

.75

.90

.50

.75

.396

.680

.925

1.000

.875

1.000

.766

.914

.984

1.000

.972

1.000

c) For q0
ql

, d3 is asymptotically unbiased.

P1

N = 20

p2 Min Max

.10

.25

.25

.50

.75

.90

.50

.75

.474

.696

.789

1.005

.757

.985

.961

1.712
1.896
1.284

.995

.999

a
ForMulas evaluated for p

1,
p
2

.1, .25,

go, q1 of ..5, 75, 90, 1 0 .

b

N = 200

Min Max

.708 3.169
1.033 8.636
1.002 7.452
1.006 2.075

.812 2.155

.999 1.585

.50, .75, .90 ;-

Due to symmetries in the formulas, all other cases in 4:11,.p2
reduce to those shown.
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TABLE 11

Exact Unconditional Bias of d1 , for N
1
= N

2

a

23

a) For pl = p2 , both al and d3 are unbiased for all N .

b) The bias in al is independent of N . For
(10 ql

, a
1

is

unbiased. For qo * qi

Bias al

p2 Min Max

100 Bias

Min Max

.10

.25

.25

.50

.75

.90

.50

.75

-.0681

-.0848

-.0271

.0008

-.0179

.0010

.0597

.1191

.1025

.0344

.0594

.0428

-45

-21

4

.1

.2

39

29

15

4

23

9

c) For a3 :

Bias d3
4.1

N = 20 N 7 50

go gi 0 I go ql q0 ql 1
q0 #1

Min Max Min Max Min Max Min Max1 p2

.10 .25

.50

.75

.90

.25 .50

.75

.0094 .0557 .0022 .0593 .0052 .0391 .0009 .0393

.0059 .0579 .0014 .0511 .0021 .0203 .0005 .0170

.0027 .0288 .0009 .0222 .0010 .0094 .0003 .0074

.0014 .0143 .0007 .0093

.0115 .0746 .0042 .0598 .0050 .0453 .0019 .0352

.0051 .0542 .0026 .0359 .0018 .0176 .0009 .0116

a
Exact unconditional results obtained for p1, p2 = .10, .25, .50,

.75, .90; qn, q1 = .50, .75, .90, .999 . Due to symmetries in the dis-
tribution, all other cases reduce to those shown with possible sign changes.
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TABLE 11 (continued)

100 Bias
d

N = 20 N = 50

go gl 0 1 q0 0 gl q0 Q.l 0 1 q0 # gi

pl p2
Min Max Min Max Min Max Min

.10

.25

.25

.50

.75

.90

.50

.75

6.2

1.4

.4

.2

4.6

1.0

37

14

4.4

1.7

29

10

1.4

.4

.1

.9

1.6

.5

39

21

3.4

1.1

23

7.1

3.4

.5

.2

2.0

.4

26

5.0

1.4

--

18

3.5

.6

.1

.0

--

.8

.2

Max

26

4.2

1.1

14

2.3

aexcept for some cases where
1

Ipl-p21 is large and N = 50 . Gener-

ally the ratio tends to increase as q1, q0 increase; that is, d3

looks worse as the proportion of missing data increases.

Table 13 gives the ratio of the exact to the asymptotic uncondi-

tional variances for a
1

and d3 for N = 20 and N = 50 . For N

as small as 20 , the asymptotic variance formula is quite close to the

A
exact variance for d1 ; for d3 the asymptotic formula does not provide

a reasonable approximation. For pl = p2 , the exact variance of a3

goes up with N , and for pl close to p2 , the exact variance does

not decrease as fast as 1/N . Generally the ratio of exact to asymp-

totic variance is largest for q0 or small as would be expected.

Note that the ordinary estimator of the conditional variance of al

should be a good estimate of its conditional variance under Model 3.

In summary, for pl = p2 or ql = q0 or N small to moderate,

is the preferred estimator. For N large, pl-p2 #,0 , and

31



TABLE 12

p. ^ aExact Ratio of Unconditional Formulas for MSE d
1

and MSE d
3

MSE

MSE d
3

25

a) For p
1

= p
2

, both a
1

and d3 are unbiased. The ratio increases

as go , gl increase. For q0 = gi = 1 , the ratio is 1.0 .

b) For

P1 P2

N=20
Min Max

N = 50

Min Max

.10 .10 .07 .95 .02 .97

.25 .25 .06 .93 .02 .67

.50 .50 .07 .73 .02 .43

qo qi 0 ,
21 is unbiased.

P1

N = 20

P2
Min Max

N = 50

Min Max

.10 .25 .08 .53 .04 .40
.50 .21 .83 .46 .90
.75 .54 .96 .84 .98
.90 .77 .98

.25 .50 .10 .60 .07 .70

c) For

.75 .27 .94 .73 .99

N = 20 N = 50

P1 P2
Min Max Min Max

.10 .25 .09 .94 .05 .94
.50 .17 1.00 .57 1.62
.75 .42 1.16 .76 2.67
.90 .88 1.03

.25 .50 .08 .85 .04 .89
75 .21 .97 .77 .99

aEXact unconditional results obtaine
.75, .90; q0, gi = .50, .75, .90, .999
distributions, all other cases reduce to
the ratio increases as gl , go increase

d for pl, p2 = .10, .25, .50,
. Due to symmetries in the
those shown. Generally speaking,



26

and q0 known to be unequal, d3 may be employed. In other words,

unless it is reasonably sure that Model 3 pertains and

will be lost than gained by using a3 .

P1 P2

TABLE 13

Ratio of Exact to Asymptotic Unconditional Variance of da

(Excluding q0 = ql = 1 for Which Ratio Is 1.0 )

more

P1 P2

N = 20 N = 50

Min Max Min Max Min Max Min Max

.10 .10 1.00 1.06 .88 5.10 1.00 1.02 .98 17.55

.25 1.00 1.06 1.02 6.27 1.00 1.02 1.03 12.41

.50 1.00 1.06 1.02 4.32 1.00 1.02 1.00 1.77

.75 1.00 1.06 1.01 1.94 1.00 1.02 1.00 1.12

.90 1.00 1.06 1.01 1.37 1.00 1.02

.25 .25 1.00 1.06 1.04 9.82 1.00 1.02 1.43 35.4

.50 1.00 1.06 1.17 9.29 1.00 1.02 1.12 18.4

.75 1.00 1.06 1.04 4.90 1.00 1.02 1.01 1.39

.50 .50 1.00 1.06 1.37 15.21 1.00 1.02 2.32 61.50

a
Exact unconditional results were obtained for pl, p2 = .10, .25,

.50, .75,..90 ; go, ql = .50, .75, .90, .999 . Due to symmetries in the

distributions of al , a3 ,`all other cases reduce to those shown.
[Note, variances were calculated conditional on n1 #0 , n2 O0 ; for
n1 r

2
= n2r1 , define a

3
. 0 .]

10. Comparisons of R1 and

The estimators of the ratio

r1 n2

r2 nl

1
/p

2
are

33
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In this section the unconditional asymptotic and exact small sample

behavior of
1

and R3 under Models 1 and 3 are compared. Results

show that for pl = p2 , q0 = , or N small to moderate, R1 is

moderately preferable to R3

The Model 3 estimator, R
3 , is asymptotically unbiased with condi-

tional and unconditional variances given in Tables 6 and 7. The behavior

of R
1 under Model 3 is given in Table 14.

TABLE 14

Asymptotic Behavior of R1 Under Model 3

E (Ri)

Bias (Ri

Var N + N2
2 1

conditional

'unconditional

(c11-(10)(P2-131)e1

P2c11

1

2 T

r )2

te j T (1-4)e
2

1
A

2
T2 (1 -a)

1 0
2
P(1-131)el (14) Pi

pip2
(1-X)X

2
A]

Under Model 3 the conditional variances of and R3. have the

ratio
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which in large samples will be approximately

[

c10 + P1 (c11-q0)

2

c10 + P2 (c11-q0)

and consequently will be greater or less than 1.0 for pl /p2 greater

or less than 1.0 .

Exact unconditional results for the bias, variance, and mean square

error were obtained for R1 and
R3

for N
1
= N

2
= 20, 50 , and for

400 parameter sets in p1, p2, ql, q0 . Results were obtained conditional

on n
1
0 0 , n

2
0 0 , and are summarized in Tables 15, 16, and 17.

For pl = p2 , both R1 and
R3

are asymptotically unbiased. In

small samples the range of the bias is generally comparable for the two

A

3
estimators although always slightly less for R1 than for R3 (see

Table 16a). The biases are generally positive and range up to 30% of

R ; the biases decrease as pl , p2 increase.

The ratio of the asymptotic unconditional variances is

Var
1

Var R3

1-0
1 -pql

which is always less than 1.0 except for ql = q0 = 1 . The ratios

have been evaluated in Table 15a. The exact ratio of mean-squared errors

is shown in Table 17a and is quite similar to asymptotic results even for

A
N = 20 . Therefore, for pl = p2 , the estimator Ri is clearly prefer-

able
A

to R3

When Model 1 is true and q = q but
P

both 11 and f
1 0' P1 2 1'

R3

are asymptotically unbiased. The biases in R1 and t3 are usually

positive and show.very similar ranges. The percentage bias depends only

on p2 and decreases. as p2 'increases (see Table 16). The ratio of the



asymptotic unconditional variances is

Var R1

Var R3

P2(1-')
p1p2

P2(14) XP1 (1P1P2

1.0 .

29

This ratio is evaluated in Table 15b. The exact unconditional ratio of

MSE R1 to MSE R3 is shown in Table 17b. The small sample comparison

favors R
1

somewhat more than the asymptotic results. Therefore, under

Model 1 R1 is to be preferred, although for p2 small, the gain in

using R1 may be relatively small.

Under Model 3, when q1 # q0 and p1 # p2

unbiased and R1 is asymptotically biased. Except for p2 small,
R3

shows a smaller range for exact bias and its bias decreases with increas-

ing N and increasing q1 (it is almost unaffected by q0 ). The ratio

of asymptotic unconditional mean - squared errors is shown in Table 15c.

For an N as small as 20 there is no clear-cut choice between 11
1

and

R3 ; by N = 200
3

is clearly preferable. The small sample results

for N = 20 shown in Table 17c are quite similar to those obtained using

asymptotic formulas. Although R3 improves with N , exact results do

not clearly favor either estimator, even for N as large as 50 .

The ratio of exact to asymptotic variance is quite similar for

and R3 . The exact variance is generally larger except for p1 = p2

and N = 20 . For N = 50 , the ratios vary from 1.0 to 3.7 , being

close to 1.0 for R < 1 and larger for R > 1 .

R3 is asymptotically

In conclusion, then, for p1 = p2 , q0 = q1 , or N small to

moderate, R1 is moderately preferable to R3 . For N large,
p1 #

p2 ,

q1 # go 3
is preferable to ft1. . For other situations, the choice

depends on the parameter values.

P.6
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TABLE 15

Ratio of Asymptotic Unconditional Formulas for MSE R1 and MSE R3

..MSE .R1

MSE

When pl = p2 , both R1 and R3 are asymptotically unbiased and

the ratio is independent of N . (For q0 = ql = 1 , the ratio

is 1.0 .)

P1 P2
Min Max

.10 .10

.25 .25

.50 .50

.75 .75

.90 .90

.91

.80

.65

.40

.18

1.00
.99

.96

.92

.91

When q0 = ql , the ratio is independent of N . For q0 = = 1.0 ,

the ratio is 1.0 . The ratio is symmetric in p1 p2

q0
ql 1

P1 p2 Min Max

.10 .25 .92 .98

.50 .91 .98

.75 .90 .98

.90 .90 .98

.25 .50 .80 .95

.75 .77 .94

.90 .76 .94

.50 .75 .57 .87

.90 .53 .85

.75 .90 .31 .69

c) Fot q0
A

ql , R
3

is asymptotically unbiased.

p2

N = 20 N = 200

Min Max Min Max.

1.17

1.91

3.02

3.86

.89 1.45

.88 4.29

.95 9.75

.96 14.31
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P1

TABLE 15 (continued)

N = 20

p2 Min Max

N = 200

Min Max

.25 .10 .71 1.18 .84 1.23
.50 .74 1.30 .90 3.10
.75 .65 2.48 1.01 11.12
.90 .62 3.56 1.08 19.21

.50. .10 .62 1.64 .91 2.22
.25 .65 1.35 .91 1.92
.75 .61 1.29 .90 5.04
.90 .58 2.33 1.07 13.84

.75 .10 .61 2.50 .95 4.85
.25 .64 2.16 1.03 5.48
.50 .54 1.32 .94 3.53
.90 .39 0.99 .64 3.97

.90 .10 .59 3.38 .98 8.09
.25 .67 3.08 1.12 10.73
.50 .58 1.98 1.16 8.38
.75 .35 0.90 .71 3.28

TABLE 16

A
Exact Unconditional Bias for R

1
as a Percent of Ra

For R3 ,'which is asymptotically unbiased, the Percentage bias is

independent of pl (the range is only slightly larger for
q0 # q1

than for q0 = ql ).

N = 20 N = 50

P2
Min Max Min Max

.10 -23 16 24 31

.25 22 28 7 20

.50 6 22 2 7

.75 2 11 1 4

.90 1 8 --

aExcluding q0 = ql = 1.0

-
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i.

TABLE 16 (continued)

For q0 = ql # 1 , R1 is asymptotically unbiased and the percent-

age bias is independent of pl .

N = 20 N = 50

P2
Min Max Min Max

.10 -23 10 23 30

.25 20 26 8 18

.50 7 15 2 5

.75 2 4 1 1

.90 1 1

c) For
q0 # ql '

R
1

is asymptotically biased.

N = 20

Min MaxP1 p2

N = 50

Min Max

.10 .10 -23 15 24 30
.25 13 33 8 20
.50 -5 40 -15 40
.75 -31 62 -31 62
,90 -45 72

.25 .10 -23 13 9 36
.25 18 27 6 20
.50 4 24 -8 22
.75 -24 42 -27 39
.90 -37 55 ONO Mb

.50 .10 -23 15 -9 57
.25 -2 44 -12 40
.50 4 20 1 6
.75 -11 18 -15 15
.90 -25 27

.75 .10 -29 20 -22 89
:25 -16 72 -24 68
.50 -11 43 -13 27
.75 2 7 0 2

.90 -10 8

.90 .10 -34 33
.25 -23 96
.50 -14 63
.75 -7 22
.90 0 3

29



TABLE 17

Exact Unconditional Ratio of MSE
1

to MSE R3

a) For pl = p2 (excluding ql = q0 = 1)

N = 20 N = 50

P1 p2 Min Max Min Max

.10 .10 .93 1.04 .87 1.00

.25 .25 .73 .99 .76 .99

.50 .50 .56 .95 .61 .95

.75 .75 .32 .92 .37 .92

.90 .90 .15 .90

b) For q0 = ql

P1

(for q0 = = 1 , the ratio is 1.0 ):

N = 20 N = 50

p2
Min Max Min Max

.10 .25 .91 .97 .85 .97
.50 .75 .96 .85 .97
.75 .73 .96 .85 .97
.90 .76 .96 --

.25 .10 .98 1.01 .92 .98
.50 .65 .93 .73 .94
.75 .60 .92 .72 .94
.90 .61 .92 --

.50 .10 .96 .98 .90 .98
.25 .79 .95 .77 .95
.75 .43 .85 .53 .86
.90 .40 .83

.75 .10 .95 .98 .89 .98
.25 .76 .94 .75 .94
.50 .52 .86 .54 .87
.90 .23 .67 --

.90 .10 .94 .97

.25 .74 .94

.50 .50 .85

.75 .26 .68

40
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c) For qo 0 qi

TABLE 17 (continued)

N = 20 N = 50

p1 p2
Min Max Min Max

.10 .25 .83 1.07 .81 1.20
.50 .56 1.86 .63 2.30
.75 .41 3.05 .62 4.14
.90 .39 3.94

.25 .10 .67 1.08 .62 1.23
.50 .63 1.26 .69 1.61
.75 .46 2.47 .68 3.91
.90 .47 3.58

.50 .10 .52 1.26 .43 1.91
.25 .46 1.43 .57 1.46
.75 .45 1.29 .59 1.92
.90 .41 2.32

.75 .10 .56 1.60 .38 3.24
.25 .38 2.35 .51 2.45
.50 .41 1.32 .53 1.62
.90 =OMNI.29 .99

.90 .10 .61 2.27
.25 .36 3.34
.50 .38 1.86
.75 .30 .87

11. The Estimation of the Odds Ratio OR

The Model 1, Model 2, and Model 3 estimators of OR all reduce to

r
1

(n
2
- r2)

OR
2

(n1 - r1)

This estimator is asymptotically unbiased under all three models with

asymptotic unconditional variances under the three models given in

Table 18.



Model

1

TABLE 18

Asymptotic Unconditional Variance of viN
1
+ N

2
OR

Variance

P1 (1-P2 )

3 (P2(1-132)(14) P1(1-P1)X]X(1-X)qp
3
(1-p )

1

P1(1-132)

3 3 [P2(1-132)(12(1-A) P1(1-131)(11X]X(1-X)p (1-p ) q q
2 1 1 2

P1(1-132)

A(1-X)qlqop23 (1-p1)
3

35

(P2(1-P2)[Plql + (1-P1)(10)(14)

P1(1-P1)(P2q1
(1-P2)q0]xi

Alternatively, the asymptotic variances are given by

where

p
1
(1-p

2
)

3
f (i)

A(1-X)p
2
(1-p

1
)
3

f (1) =
p1(1 -p1)A p

2
(1-p

2
)(1-X)

p1(1 -p1)A
P -P2)(1-A)

f(2) =
(12 ql

0

Pl(1 -P1)X
p2

P2(1-132)(14)
p1

f(3) =
e
2

e
go go

This independence of the form of the estimator from q(x,y) suggests

that the use of OR will be robust to q(x,y) . Further investigation of

A
OR is then in order.
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Under pl = p2 the variance formulas reduce to

1

q

1

(1-X)p (1-p)

(1-A)

(12 ql

qT0

Model 1

Model 2

Model 3

Table 19 shows the exact bias in OR under Model 3 for N1 = N2 = 20 ;

Table 20 shows the performance of the asymptotic variance formula for

N
1

= N
2

= 20 . Generally the bias is of the order of 20% to 50% of

OR , although it does not contribute appreciably to ESE . This suggests

a modification of OR to reduce bias along the lines suggested by

Anscombe (1956) and Gart & Zweifel (1967) for estimating the logit. The

exact behavior of OR does not seem to depend particularly on

or
1(11 q01

TABLE 19

Exact Unconditional Bias of OR for N
1
= N

2
= 20

a

'Pi P2I

b
P1 P2

Bias
100 Bias

OR
Min Max Min Max

.10 .10
.25
.50
.75
.90

-.195
.116

.0207

.00505

.00151

.331

.176

.0522

.0126

.00363

-20
39

23
19

19

33

59
58
47

45

aFor q0, ql = .5, .75, .90, 1.0 .
b
For the other cases in

p1,
p2 , note that

to (1-p2), (1-p1) with the es reversed.

4p

1 P2
is equivalent
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TABLE 19 (continued)

P1 p2 Min

Bias

Max

100 Bias
OR

Min Max

.25 .10 -.553 1.134 -18 28
.25 .365 .578 37 58
.50 .0672 .174 20 52
.75 .0168 .0428 15 39

.50 .10 1.339 4.632 -15 51
.25 1.275 2.206 43 75
.50 .254 .670 25 67

.75 .10 -.866 15.427 -3 57
.25 5.585 7.221 62 80

.90 .10 -34.198 30.053 -42 37

TABLE 20

Ratios of Exact to Asymptotic Variance and MSE

for OR for N1 = N2 = 20

b
P1

.10

.25

.50

.75

.90

Variance MSE

p2 Min Max Min Max

.10 .426 2.100 .444 2.190

.25 2.304 4.550 2.384 4.795

.50 1.860 4.420 1.906 4.566

.75 1.610 3.399 1.632 3.469

.90 1.660 3.299 1.674 3.338

.10 .314 2.284 .337 2.435

.25 2.219 5.541 2.362 5.966

.50 1.984 5.300 2.071 5.593

.75 1.647 3.879 1.690 4.018

.10 .316 3.157 .332 3.448

.25 2.520 7.673 2.756 8.417

.50 2.439 7.389 2.601 7.950

.10 .469 3.097 .470 3.444

.25. 3.080 7.930 3.441 8.852

.10 .072 1.244 .152 1.368

aFor q
0'

q
1
= 3, .75, .90, 1.0 .

bFor the other cases in pl, p2 , note that pi, p2 is equivalent to
(1-p

2
), (1-p1) with the q's reversed. The extremes usually occur at

q
1 , q 0 = .5), (1.0, 1.0), (.5, 1.0), (1.0, .5)

44-
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12. Conclusions: Tests and Confidence Intervals

Under'Models 1, 2, or 3

A test of Ho : pi = p2 may be carried out using the Irwin-Fisher

exact test for the 2x2 table of r
i

and ni - ri
'
conditional on n

1 '

n
2

, and r
1
+ r

2
. The tabled significance values and the power function

will be correct under all three models. If Model 4 obtains, an accurate

test of pl = p2 cannot be performed without additional information.

The major issues in point and interval estimation are the choice of

an estimator and the calculation of a variance. For the estimation of

d, al is the estimator of choice for Models 1 and 2, and, though

biased may be useful for Model 3 unless N is larger than 50 and

and
P2

pl

are known to be widely different. The ordinary estimator of the

conditional variance of a
1

should perform well under all three models.

To estimate R , use R1 in Models 1 and 2; under Model 3 the

A
choice between R

1
and R

3
depends strongly on the values of the

parameters. Modification of these estimators to reduce bias is of

interest. It is common to base confidence intervals on the large sample

normal distributions of R . In small samples the large sample standard

error is biased. In addition, it may be sensible to estimate the large

sample conditional variance formula for Model 3 by substituting ri/ni

for the e
i

but there is no good estimator for the pi d
c13 .

of the

unconditional formula.

To estimate OR A (or a modification to reduce bias) can be

used under all three models. Uniformly most-accurate confidence intervals

can be constructed for OR using the noncentral distribution of r1 ,
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r
2

conditional on (r
1
+ r

2
) , n

1
, n

2
(see Lehmann, 1959). This non

central distribution is the same under all three models.

In conclusion, then, the effect of different models for missing data

depends on the inference problem at hand. Choice of a test for H0 :

pi p2 and an estimator for OR is the same for Models 1, 2, and 3.

Estimation of p and d and R is the same for Models 1 and 2 but

may be difficult for Model 3. Under Model 4, additional information is

necessary.
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